Prototype and description of the function setusercoordsys2()

(Function of the unlock requiring group "User definitions")

 

setusercoordsys2()
Configuration of the second of two user-defined Coordinate Systems.

Prototype of the DLL function in C++ syntax (attend lower case!):
extern "C" __declspec(dllimport) unsigned long __stdcall setusercoordsys2(
     unsigned short nProjNum,
     double nPar1,
     double nPar2,
     double nPar3,
     double nPar4,
     double nPar5,
     double nPar6,
     double nPar7,
     double nPar8);

Prototype of the DLL function in Visual Objects syntax:
_DLL function setusercoordsys2(;
     nProjNum as word,;                    // 2 Byte
     nPar1 as real8,;                      // 8 Byte
     nPar2 as real8,;                      // 8 Byte
     nPar3 as real8,;                      // 8 Byte
     nPar4 as real8,;                      // 8 Byte
     nPar5 as real8,;                      // 8 Byte
     nPar6 as real8,;                      // 8 Byte
     nPar7 as real8,;                      // 8 Byte
     nPar8 as real8);                      // 8 Byte
as logic pascal:geodll32.setusercoordsys2  // 4 Byte


The function saves the parameters of the second user-defined coordinate
system. The first user-defined Coordinate System can be defined with the
function setusercoordsys1().

Use of the Coordinate System parameters:
With the functions coordtrans?() the parameters of the user-defined
Coordinate System described here are used, if as flag for the coordinate
system (nCoordQ) the value 1100 is passed.


The parameters are passed and/or returned as follows:
nProjNum (Projection method of the user-defined Coordinate System)
   Parameter variable
          Description of the projection method
            Description of the projection parameter

0         Erase the second user-defined Coordinate System
   nPar1    0.0 or arbitrary value without effect
   nPar2    0.0 or arbitrary value without effect
   nPar3    0.0 or arbitrary value without effect
   nPar4    0.0 or arbitrary value without effect
   nPar5    0.0 or arbitrary value without effect
   nPar6    0.0 or arbitrary value without effect
   nPar7    0.0 or arbitrary value without effect
   nPar8    0.0 or arbitrary value without effect

1         Transverse Mercator Projection
   nPar1    Longitude of natural origin (Central meridian) [degrees]
   nPar2    Latitude of natural origin [degrees]
   nPar3    False easting [meter]
   nPar4    False nothing [meter]
   nPar5    Scale factor at natural origin (Central meridian)
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

2         Transversal Mercator meridian strip system
   nPar1    Longitude of first meridian strips natural origin [degrees]
   nPar2    Width of meridian strips [degrees]
   nPar3    False easting [meter]
   nPar4    False northing [meter]
   nPar5    Scale factor at natural origin
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

3         Lambert Conformal Conic Projektion (one standard parallel)
   nPar1    Longitude of grid origin [degrees]
   nPar2    Latitude of standard parallel [degrees]
   nPar3    Easting at grid origin [meter]
   nPar4    Northing at grid origin [meter]
   nPar5    Scale Factor on standard parallel
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

4         Lambert Conformal Conic Projektion (two standard parallel)
   nPar1    Latitude of first standard parallel [degrees]
   nPar2    Latitude of second standard parallel [degrees]
   nPar3    Longitude of grid origin [degrees]
   nPar4    Latitude of grid origin [degrees]
   nPar5    Easting at grid origin [meter]
   nPar6    Northing at grid origin [meter]
   nPar7    Scale factor
   nPar8    0.0

5         Oblique Conformal Conic Projection (e.g. Czech republic)
   nPar1    Longitude of projection center [degrees]
   nPar2    Latitude of projection center [degrees]
   nPar3    Azimuth of center line [degrees]
   nPar4    Latitude of pseudo standard parallel [degrees]
   nPar5    Scale factor on pseudo standard parallel
   nPar6    False easting at projection center [meter]
   nPar7    False northing at projection center [meter]
   nPar8    0.0

6         Oblique Mercator Projection (e.g. Switzerland, Alaska)
   nPar1    Longitude of projection center [degrees]
   nPar2    Latitude of projection center [degrees]
   nPar3    Azimuth of initial line [degrees]
   nPar4    Rectified bearing of initial line [degrees]
   nPar5    Easting at projection center [meter]
   nPar6    Northing at projection center [meter]
   nPar7    Scale factor at initial line
   nPar8    0.0

7         Oblique Stereographic Projection (e.g. Netherlands)
   nPar1    Longitude of natural origin [degrees]
   nPar2    Latitude of natural origin [degrees]
   nPar3    False easting at natural origin [meter]
   nPar4    False northing at natural origin [meter]
   nPar5    Scale factor at natural origin
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

8         Quasi Stereographic Projection (e.g. Poland)
   nPar1    Longitude of natural origin [degrees]
   nPar2    Latitude of natural origin [degrees]
   nPar3    False easting at natural origin [meter]
   nPar4    False northing at natural origin [meter]
   nPar5    Scale factor at natural origin
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

9         Cassini Soldner Projection
   nPar1    Longitude of projection center [degrees]
   nPar2    Latitude of projection center [degrees]
   nPar3    False easting [meter]
   nPar4    False nothing [meter]
   nPar5    0.0
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

10        Lambert Azimuthal Equal Area Projection
   nPar1    Longitude of origin [degrees]
   nPar2    Latitude of origin [degrees]
   nPar3    False easting [meter]
   nPar4    False nothing [meter]
   nPar5    0.0
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

11        Orthogonal Output Device Projection
   nPar1    Smallest possible longitude [degrees]
   nPar2    Smallest possible latitude [degrees]
   nPar3    Largest possible longitude [degrees]
   nPar4    Largest possible latitude [degrees]
   nPar5    Smallest value on the X-axis [point]
   nPar6    Smallest value on the Y-axis [point]
   nPar7    Largest value on the X-axis [point]
   nPar8    Largest value on the Y-axis [point]

12        Equidistant Cylindrical Projection
   nPar1    Longitude of central meridian [degrees]
   nPar2    Latitude of standard parallel [degrees]
   nPar3    False easting [meter]
   nPar4    False nothing [meter]
   nPar5    0.0
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

13        Bonne Pseudoconical Equal Area Projection
   nPar1    Longitude of origin [degrees]
   nPar2    Latitude of origin [degrees]
   nPar3    False easting [meter]
   nPar4    False nothing [meter]
   nPar5    0.0
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

14        Albers Equal Area Conic Projection
   nPar1    Latitude of first standard parallel [degrees]
   nPar2    Latitude of second standard parallel [degrees]
   nPar3    Longitude of grid origin [degrees]
   nPar4    Latitude of grid origin [degrees]
   nPar5    Easting at grid origin [meter]
   nPar6    Northing at grid origin [meter]
   nPar7    0.0
   nPar8    0.0

15        Mercator Projection (1 standard parallel)
   nPar1    Longitude of origin [degrees]
   nPar2    Latitude of origin [degrees]
   nPar3    False easting [meter]
   nPar4    False northing [meter]
   nPar5    Scale factor
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

16        American Polyconic Projection
   nPar1    Longitude of origin [degrees]
   nPar2    Latitude of origin [degrees]
   nPar3    False easting [meter]
   nPar4    False nothing [meter]
   nPar5    0.0
   nPar6    0.0
   nPar7    0.0
   nPar8    0.0

returnVal   If the parameters for second user-defined Coordinate System
            are successful stored, the function returns TRUE, otherwise
            FALSE.


Unlocking:
This function is a component of the unlock requiring function group
"user definitions". It is unlocked for unrestricted use together with the
other functions of the group by passing the unlock parameters, acquired
from the software distribution company, trough the function setunlockcode().
Without unlocking only a few function calls for test purposes (shareware
principle) are possible.